Cascade Defluorination of Perfluoroalkylated Catholytes Unlocks High Lithium Primary Battery Capacities

Author:

Gao Haining1ORCID,Yoshinaga Kosuke2ORCID,Steinberg Katherine3ORCID,Swager Timothy M.2,Gallant Betar M.1ORCID

Affiliation:

1. Department of Mechanical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA

2. Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA

3. Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA

Abstract

AbstractExceeding the energy density of lithium−carbon monofluoride (Li−CFx), today's leading Li primary battery, requires an increase in fluorine content (x) that determines the theoretical capacity available from C−F bond reduction. However, high F‐content carbon materials face challenges such as poor electronic conductivity, low reduction potentials (<1.3 V versus Li/Li+), and/or low C−F bond utilization. This study investigates molecular structural design principles for a new class of high F‐content fluoroalkyl‐aromatic catholytes that address these challenges. A polarizable conjugated system—an aromatic ring with an alkene linker—functions as electron acceptor and redox initiator, enabling a cascade defluorination of an adjacent perfluoroalkyl chain (RF = −CnF2n+1). The synthesized molecules successfully overcome premature deactivation observed in previously studied catholytes and achieve close‐to‐full defluorination (up to 15/17 available F), yielding high gravimetric capacities of 748 mAh g−1fluoroalkyl‐aromatic and energies of 1785 Wh kg−1fluoroalkyl‐aromatic. The voltage compatibility between fluoroalkyl‐aromatics and CFx enables design of hybrid cells containing C−F redox activity in both solid and liquid phases, with a projected enhancement of Li–CFx gravimetric energy by 35% based on weight of electrodes+electrolyte. With further improvement of cathode architecture, these “liquid CFx” analogues are strong candidates for exceeding the energy limitations of today's primary chemistries.

Funder

Army Research Office

National Science Foundation

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3