Effect of Solid Electrolyte Interphase on Sodium-Ion Insertion and Deinsertion in Non-Graphitizable Carbon

Author:

Tsujimoto Shota,Lee Changhee,Miyahara YutoORCID,Miyazaki KoheiORCID,Abe Takeshi

Abstract

Non-graphitizable carbon allows reversible sodium-ion intercalation and hence enables stable and high-capacity sodium storage, making it a promising material for achieving long-term cycling stability in sodium-ion batteries (SIBs). This study investigated the interfacial reactions between various electrolytes and a non-graphitizable carbon electrode for their use in SIBs. The morphology and particle diameter of the non-graphitizable carbon, HC-2000, remained unchanged after heat treatment, indicating its stability. The X-ray diffraction pattern and Raman spectrum suggested a disordered structure of HC-2000 carbon. The interlayer spacing, Brunauer–Emmett–Teller specific surface area, and density were determined to be 0.37 nm, 5.8 m2 g−1, and 1.36 g cm−3, respectively. Electrochemical impedance spectroscopy analysis showed that the charge transfer resistances differed between the Na salts and other electrolytes. Therefore, the use of a large amount of NaF in the solid electrolyte interphase (SEI) resulted in high charge transfer resistances at the non-graphitizable electrodes. However, there were no apparent differences in the activation energy or reversible capacity. In summary, NaF obstructs the penetration pathway of sodium ions into non-graphitizable carbon, impacting the charge transfer resistance and rate stability of SIBs. Charge–discharge measurements revealed reversible capacities of 260–290 mAh g−1, and the rate performance varied depending on the electrolyte. Therefore, an SEI containing minimal inorganic species, such as NaF, is desirable for efficient sodium-ion insertion into non-graphitizable carbon.

Funder

Japan Science and Technology Corporation

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3