Affiliation:
1. Graduate School of Engineering Kyoto University Kyoto 615-8510 Japan
2. Department of Applied Chemistry Tokyo University of Science 1-3 Kagurazaka, Shinjuku Tokyo 162-8061 Japan
Abstract
AbstractThe relentless quest for sustainable and efficient energy storage solutions has propelled sodium‐ion batteries (SIBs) to the forefront of research and development in the realm of rechargeable batteries. This mini review delves into the intricate interfacial kinetics of Na ion transfer within SIBs, with a special focus on the carbon‐based negative electrode/electrolyte interfaces. By synthesizing insights from a myriad of studies encompassing experimental and theoretical analyses, we illuminate the critical role of electrode material properties and interfacial dynamics in dictating the kinetics of Na ion transfer for SIBs. Strategies for optimizing these parameters are scrutinized, revealing pathways to enhance the kinetic behavior of Na ions. Furthermore, emerging materials such as hard carbon, carbon nanospheres, and graphene‐like graphite are evaluated for their potential to surmount existing limitations.