Abstract
This study combines local electrochemical diagnostics with ex situ analysis to investigate degradation mechanism associated to start-up/shut-down (SU/SD) of PEMFC and mitigation strategies adopted in automotive stacks. Local degradation resulting from repeated SU/SD was analyzed with and without mitigation strategies by means of a macro-segmented cell setup provided with Reference Hydrogen Electrodes (RHEs) at both anode and cathode to measure local electrodes potential and current. Accelerated Stress Test (AST) for start-up with and without mitigation strategies are proposed and validated. A ten-fold acceleration of performance loss due to un-mitigated SU/SD has been calculated with respect to AST for catalyst support. Under mitigated SU/SD, instead, a strong degradation was observed as localized at cathode inlet region (i.e. −38% ECSA loss and −22 mV voltage loss after 200 cycles) due to local potentials transient reaching up to 1.5 V vs RHE. These localized stress conditions were additionally reproduced in a zero-gradient and a new AST protocol (named start-up AST) was proposed to mimic the potential profile observed upon SU/SD cycling. Representativeness of the start-up AST for real world degradation was confirmed up to 200 cycles. Platinum dissolution and diffusion/precipitation within the polymer electrolyte was shown to be the dominant mechanism affecting performance loss.
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献