Application of a CFD Methodology for the Design of PEM Fuel Cell at the Channel Scale

Author:

Bulgarini Margherita1,Della Torre Augusto1,Montenegro Gianluca1,Baricci Andrea1,Grimaldi Amedeo1,Mereu Riccardo1,Marocco Luca1,Collaku Aldo2,Savoldi Laura2

Affiliation:

1. Politecnico di Milano

2. Politecnico di Torino

Abstract

<div class="section abstract"><div class="htmlview paragraph">Polymer electrolyte membrane (PEM) fuel cells will play a crucial role in the decarbonization of the transport sector, in particular for heavy duty applications. However, performance and durability of PEMFC stacks is still a concern especially when operated under high power density conditions, as required in order to improve the compactness and to reduce the cost of the system. In this context, the optimization of the geometry of hydrogen and air distributors represents a key factor to improve the distribution of the reactants on the active surface, in order to guarantee a proper water management and avoiding membrane dehydration. To this purpose, the adoption of CFD simulation tools can provide a useful insight into the physical phenomena which determine the efficient operation of the fuel cell (e.g. transport of mass, heat, species, electrons and ions, electrochemical reactions, water formation and removal), providing a valuable support for the design and the optimization of the device at the channel scale. In this work, an open-source simulation library, based on the OpenFOAM code, is applied to the detailed simulation of a basic module of a PEM fuel cell arranged with simple parallel channels. The simulation methodology is based on a multi-region and multi-physics approach, where the different components of the fuel cell (namely air and fuel channels, gas diffusion layers, catalyst layers, bipolar plates) are modeled resorting to different computational grids defining different local domains, on which the specific governing equations are solved. Transport phenomena in all of the local domains are coupled and solved simultaneously. The model is firstly validated resorting to experimental data acquired on a specific test bench installed at Politecnico di Milano. Then, a detailed analysis of the flow field is conducted in order to provide guidelines for the optimization of the distributor geometry. Finally, the influence of the channel design on the fuel cell performances is investigated, highlighting the influence of the rib-to-channel width geometrical parameter on the reactants diffusion and water removal.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3