Abstract
Maintaining the high performance of proton-exchange membrane fuel cells (PEMFC) over the course of its lifetime is a key enabling factor for its successful commercialization as a primary power source in zero-emission transportation applications. In this context, it is important to mitigate the degradation of PtCo-alloy based cathode catalysts used for oxygen reduction reaction (ORR). PtCo-alloy catalysts exhibit high activity at beginning-of-life (BOL) which tends to decrease during operation due to loss of electrochemical surface area (ECSA) and dissolution-contamination related effects of the Co-alloying component. Here, we demonstrate the use of relative humidity (RH) of the inlet gases as a controllable parameter to mitigate the degradation of PtCo-alloy catalyst degradation. We employ a catalyst-specific voltage cycling accelerated stress test (AST) durability protocol as a function of inlet RH to degrade PtCo catalysts. A series of in situ electrochemical diagnostics and ex situ characterizations have been carried out to investigate the catalyst layer characteristics at end-of-test (EOT). Our results show that at sub-saturated conditions of durability protocol operation, PtCo catalyst sustains higher EOT H2/air performance due to better retention of ECSA and smaller impact of Co2+ dissolution/contamination.
Funder
Fuel Cell Technologies Office
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献