On the Stability of an Atomically‐Dispersed Fe−N−C ORR Catalyst: An In Situ XAS Study in a PEMFC

Author:

Menga Davide1,Li Yan‐Sheng1ORCID,Damjanović Ana Marija1,Proux Olivier2ORCID,Wagner Friedrich E.3ORCID,Fellinger Tim‐Patrick4ORCID,Gasteiger Hubert A.1ORCID,Piana Michele1ORCID

Affiliation:

1. TUM School of Natural Sciences Department of Chemistry and Catalysis Research Center Chair of Technical Electrochemistry Technical University of Munich 85748 Garching Germany

2. Observatoire des Sciences de l'Univers de Grenoble (OSUG) UAR 832 CNRS Univ. Grenoble Alpes F-38041 Grenoble France

3. TUM School of Natural Sciences Department of Physics Technical University of Munich 85748 Garching Germany

4. Bundesanstalt für Materialforschung und -Prüfung (BAM) 12203 Berlin Germany

Abstract

AbstractThe stability of Fe−N−C oxygen reduction reaction (ORR) electrocatalysts has been considered a primary challenge for their practical application in proton exchange membrane fuel cells (PEMFCs). While several studies have attempted to reveal the possible degradation mechanism of Fe−N−C ORR catalysts, there are few research results reporting on their stability as well as the possible Fe species formed under different voltages in real PEMFC operation. In this work, we employ in‐situ X‐ray absorption near‐edge structure (XANES) to monitor the active‐site degradation byproducts of an atomically dispersed Fe−N−C ORR catalyst under a H2/O2‐operating PEMFC at 90 % relative humidity and 80 °C. For this, stability tests were carried out at two constant cell voltages, namely 0.4 and at 0.8 V. Even though the ORR activity of the Fe−N−C catalyst decreased significantly and was almost identical at the end of the tests for the two voltages employed, the analysis of the XANES recorded under H2/N2 configuration at 0.6 and 0.9 V within the stability test suggests that two different degradation mechanisms occur. They are demetalation of iron cations followed by their precipitation into Fe oxides upon operation at 0.8 V, versus a chemical carbon oxidation close to the active sites, likely triggered by reactive oxygen species (ROS) originated from the H2O2 formation, during the operation at 0.4 V.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3