Long-Term Study on the Impact of Depth of Discharge, C-Rate, Voltage, and Temperature on the Lifetime of Single-Crystal NMC811/Artificial Graphite Pouch Cells

Author:

Eldesoky A.ORCID,Bauer M.,Bond T.ORCID,Kowalski NicholasORCID,Corsten J.,Rathore D.ORCID,Dressler R.,Dahn J. R.ORCID

Abstract

This work examined the impact of depth of discharge (DOD), C-rate, upper cut-off voltage (UCV), and temperature on the lifetime of single-crystal NMC811/Artificial Graphite (AG) cells. Cells were cycled at C/50, C/10, C/5, or C/3, and 25, 50, 75, or 100% DOD at room temperature (RT, 20 ± 2 °C) or 40.0 ± 0.1 °C. The UCVs were 4.06 or 4.20 V. After 12000 hr of cycling, experiments such as electrochemical impedance spectroscopy (EIS), Li-ion differential thermal analysis (DTA), ultrasonic mapping, X-ray fluorescence (XRF), differential capacity analysis, synchrotron computed tomography (CT) scans, and cross-section scanning electron microscopy (SEM) were carried out. We showed that capacity loss increased slightly with DOD and C-rate, and that cells with 4.06 V UCV have superior capacity retention and impedance control compared to 4.20 V. SEM, CT scans, and differential capacity analysis show that microcracking and positive electrode mass loss did not occur regardless of DOD, C-rate, or UCV. DTA and ultrasonic mapping showed no C-rate or DOD dependency for electrolyte changes or “unwetting.” Finally, a simple square-root time model was used to model SEI growth in 4.06 V UCV cells.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3