A Systematic Study of Electrolyte Additives in Single Crystal and Bimodal LiNi0.8Mn0.1 Co0.1O2/Graphite Pouch Cells

Author:

Song WentaoORCID,Harlow JessieORCID,Logan EricORCID,Hebecker Helena,Coon MatthewORCID,Molino LaurentORCID,Johnson MichelORCID,Dahn JeffORCID,Metzger MichaelORCID

Abstract

A few weight percent of electrolyte additives can dramatically improve Li-ion battery performance and lifetime. A systematic investigation of a series of electrolyte additive formulations was performed on bimodal (BM) and single crystal (SC) LiNi0.8Mn0.1Co0.1O2 (NMC811)/artificial graphite (AG) pouch cells. Long-term cycling tests at different temperatures (20 °C, 40 °C, and 55 °C) and different upper cutoff voltages (4.06 V and 4.20 V) were performed. These tests results were combined with advanced characterization techniques like ultra-high precision charging (UHPC), ex-situ gas measurement, and automatic cell storage tests to rank the additives based on their effectiveness. Radar plots and a figure-of-merit (FOM) approach were further utilized to summarize results for the BM and SC NMC811/AG cells. This work provides a useful benchmark for those developing NMC811/graphite cells and gives important insights for future electrolyte additive studies.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3