Influence of Initial Porosity on the Expansion Behavior of Electrodes in Lithium-Ion Batteries

Author:

Moyassari ErfanORCID,Kücher SimonORCID,Jobst Nicola MichaelORCID,Chang Chia-Chin,Hou Shang-ChiehORCID,Spingler Franz B.ORCID,Wohlfahrt-Mehrens MargretORCID,Jossen AndreasORCID

Abstract

When charging or discharging a lithium-ion-battery (LIB), lithiation or delithiation of the electrodes takes place. Especially in the case of anode active materials, lithiation often leads to a significant volume increase. The latter can cause a rearrangement of the particles. Although the volumetric changes of state-of-the-art cathode materials have been found to be smaller than for anodes, they remain relevant. The combined volumetric changes of anodes and cathodes are an important factor influencing the lifetime of LIBs. An electrochemical dilatometer was used to measure the thickness change of various electrode active materials under minimal constant pressure (≈ 16 kPa): graphite, silicon-graphite (SiG) composite electrodes, and high-voltage spinel lithium-nickel-manganese-oxide (HVS-LNMO). The influencing factors investigated included the initial porosity of the electrodes, the particle shape of graphite, and the silicon content in the case of the silicon-graphite composite electrodes. Regarding all investigated electrodes, the initial electrode porosity is shown to correlate negatively with the irreversible thickness change during the initial cycles. The thickness change in each electrode was constant over the post-formation cycles, regardless of the initial porosity. Spherical particles in graphite resulted in slightly higher thickness changes than flake-type particles. The thickness change of SiGs increased linearly with silicon content.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3