Increasing Volumetric Capacity Diminishes Rate Performance in Li-Ion Battery Electrodes

Author:

Horváth Dominik V.ORCID,Nicolosi ValeriaORCID,Coleman Jonathan N.ORCID

Abstract

Combining high-capacity electrodes with good rate performance is essential for maximising both energy and power density in Li-ion batteries. While much effort has been dedicated to increasing both capacity and rate performance, little consideration has been made as to how an increase in specific or volumetric capacity might directly affect rate performance. Here, we quantitatively examine the relationship between the volumetric capacity of Li-storing electrodes and their rate performance using graphite/boron-nitride composite electrodes with a range of compositions as a model system. The rate performance of these cells is evaluated by fitting capacity vs rate curves to a semi-empirical equation and extracting a characteristic charge/discharge time. As graphite content and so electrode capacity are increased, we observe a linear, threefold increase of this characteristic time, representing a significant degradation in rate performance. This shows that capacity and rate performance are anti-correlated, an observation is consistent with the predictions of a simple physical model which shows this effect to be associated with the RC charging time of the electrode. Using no adjustable parameters, we find excellent agreement between the model and our experimental data.

Funder

European Research Council

Science Foundation Ireland

H2020 European Research Council

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3