Universal Correlation between Cathode Roughness Factor and H2/Air Performance Losses in Voltage Cycling-Based Accelerated Stress Tests

Author:

Della Bella Roberta K. F.ORCID,Stühmeier Björn M.ORCID,Gasteiger Hubert A.ORCID

Abstract

The loss of electrochemically active surface area (ECSA) in the cathode during load cycling remains a major durability issue for proton exchange membrane fuel cells (PEMFCs). Here, the degradation of low-loaded cathodes (0.1 mg Pt cm MEA 2 ) was investigated by accelerated stress tests (ASTs) in H2/N2 configuration, varying the upper potential limit (UPL, 0.85–1.0 V) and the hold time (1, 2, or 8 s) of the square wave voltage cycling profiles. A full voltage loss analysis was performed at beginning-of-life and after 100, 300, 1 k, 2 k, 5 k, 10 k, 20 k, 50 k, 100 k, 200 k, and 500 k cycles, determining: (i) the roughness factor (rf) via CO-stripping; (ii) the H2-crossover; (iii) the cathode electrode’s proton conduction resistance; (iv) the H2/O2 and H2/air performance; and, (v) the O2 transport resistance. It was found that the ECSA/rf deteriorates linearly vs the logarithm of the number of cycles or time at UPL, with higher slopes for harsher ASTs. The individual voltage losses were found to be either unaffected by the aging (H2-crossover and proton conduction resistance) or depend exclusively on the cathode rf (mass/specific activity and O2 transport resistances), independent of the AST procedure. This results in a universal correlation between H2/air performance and rf during voltage cycling ASTs.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3