Implications of Aqueous Processing for High Energy Density Cathode Materials: Part II. Water-Induced Surface Species on LiNi0.8Co0.15Al0.05O2

Author:

Hofmann Michael,Kapuschinski Martina,Guntow Uwe,Giffin Guinevere A.ORCID

Abstract

Aqueous electrode manufacturing of nickel-rich layered oxide cathode materials poses a significant challenge due to their high water sensitivity. LiNi0.8Co0.15Al0.05O2 (NCA) has been shown to be particularly sensitive not only to water during processing, but also ambient air. In an effort to further clarify the processes that occur when NCA is in contact with water, the active material was investigated after different durations of water exposure. The results show that a differentiation has to been made between the surface impurities already present on NCA in the pristine state, water-induced surface species and water-induced leached species. The results demonstrate that the water-induced surface species can be mainly attributed to chemisorbed CO2, nickel carbonate and NiOOH-like species but also smaller amounts of newly-formed aluminum and cobalt compounds. The water-induced leached species were assigned to lithium and aluminum-containing species. Water-induced surface species lead to a severe deterioration of the cells due to the resistive nature of these moieties and their involvement in side reactions during cycling. It is essential to find ways to suppress the formation of these species for the successful implementation of aqueous processing for NCA and likely nickel-rich cathode materials in general.

Funder

Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie

Bundesministerium für Bildung und Forschung

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3