Unique insights into the design of low-strain single-crystalline Ni-rich cathodes with superior cycling stability

Author:

Han Qiang1,Yu Haifeng2,Cai Lele1,Chen Ling1,Li Chunzhong12,Jiang Hao1ORCID

Affiliation:

1. Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

2. State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

Abstract

Micro-sized single-crystalline Ni-rich cathodes are emerging as prominent candidates owing to their larger compact density and higher safety compared with poly-crystalline counterparts, yet the uneven stress distribution and lattice oxygen loss result in the intragranular crack generation and planar gliding. Herein, taking LiNi 0.83 Co 0.12 Mn 0.05 O 2 as an example, an optimal particle size of 3.7 µm is predicted by simulating the stress distributions at various states of charge and their relationship with fracture free-energy, and then, the fitted curves of particle size with calcination temperature and time are further built, which guides the successful synthesis of target-sized particles ( m -NCM83) with highly ordered layered structure by a unique high-temperature short-duration pulse lithiation strategy. The m -NCM83 significantly reduces strain energy, Li/O loss, and cationic mixing, thereby inhibiting crack formation, planar gliding, and surface degradation. Accordingly, the m-NCM83 exhibits superior cycling stability with highly structural integrity and dual-doped m-NCM83 further shows excellent 88.1% capacity retention.

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3