Elucidating the Role of Hydroxide Electrolyte on Anion-Exchange-Membrane Water Electrolyzer Performance

Author:

Liu JiangjinORCID,Kang ZhenyeORCID,Li Dongguo,Pak Magnolia,Alia Shaun M.ORCID,Fujimoto Cy,Bender Guido,Kim Yu Seung,Weber Adam Z.ORCID

Abstract

Many solid-state devices, especially those requiring anion conduction, often add a supporting electrolyte to enable efficient operation. The prototypical case is that of anion-exchange-membrane water electrolyzers (AEMWEs), where addition of an alkali metal solution improves performance. However, the specific mechanism of this performance improvement is currently unknown. This work investigates the functionality of the alkali metal solution in AEMWEs using experiments and mathematical models. The results show that additional hydroxide plays a key role not only in ohmic resistance of the membrane and catalyst layer but also in the reaction kinetics. The modeling suggests that the added liquid electrolyte creates an additional electrochemical interface with the electrocatalyst that provides ion-transport pathways and distributes product gas bubbles; the total effective electrochemical active surface area in the cell with 1 M KOH is 5 times higher than that of the cell with DI water. In the cell with 1 M KOH, more than 80% of the reaction current is associate with the liquid electrolyte. These results indicate the importance of high pH of electrolyte and catalyst/electrolyte interface in AEMWEs. The understanding of the functionality of the alkali metal solution presented in this study should help guide the design and optimization of AEMWEs.

Funder

Hydrogen and Fuel Cell Technologies Office

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3