Abstract
AbstractAnion exchange membrane water electrolysis (AEMWE) has seen rapid advancements over the past decade due to its promising role in green hydrogen production. Ensuring long-term functionality is as crucial as optimizing performance to achieve commercial viability and industrial integration. However, few studies have systematically discussed the degradation issues of this technology. Therefore, a thorough understanding of AEMWE degradation is needed to guide the design, assembly, operation, and maintenance of the device over its lifetime. To address this gap, this review systematically overviewed the heterogeneous degradation of AEMWE across different material and interface levels, focusing on several key components including catalysts, ionomers, membranes, and gas diffusion layers. The influences of these components and their interfaces on the catalytic efficiency, active site density, and mass and electron transfer capabilities were discussed. Moreover, the impacts of operation conditions, including temperature, electrolyte composition, and clamping pressure, on the stable operation of AEMWE were assessed. Accordingly, current mitigation strategies to resolve these degradation phenomena were rigorously evaluated. By offering insights into optimizing operations, designing materials, and improving assessment protocols for AEMWE, this work will contribute to enhancing its stability for large-scale hydrogen production.
Funder
Research Grants Council of Hong Kong
National Natural Science Foundation of China
Environmental Protection Department of Hong Kong
City University of Hong Kong
Guangdong Provincial Department of Science and Technology
Science and Technology Department of Sichuan Province
Guangdong Provincial Key Laboratory of Materials and Technology for Energy Conversion, Guangdong Technion-Israel Institute of Technology
Publisher
Springer Science and Business Media LLC