Abstract
The mass loading of Si–graphite electrodes is often considered as a parameter of secondary importance when testing their electrochemical performance. However, if a sacrificial additive is present in the electrolyte to improve the electrochemical performance, the electrode loading becomes the battery cycle-life-determining factor. The correlation between mass-loading, electrolyte additive, and binder type was investigated by analyzing the cycling behavior of Si–graphite electrodes, prepared with water-based binders, with mass loading ranging from 3 to 9.5 mg cm−2 and cycled with FEC electrolyte additive, while keeping electrolyte amount constant. A lower loading was obtained by keeping slurry preparation steps unchanged from binder to binder and resulted in a longer lifetime for some of the binders. When the final loading was kept constant instead, the performance became independent of the binder used. Since such results can lead to the misinterpretation of the influence of electrode components on the cycling stability (and to a preference of one binder over another in our case), we propose that a comparison of long-term electrochemical performance data of Si–graphite electrodes needs to be always collected by using the same mass-loading with the constant electrolyte and additive.
Funder
Innosuisse - Schweizerische Agentur für Innovationsförderung
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献