Scaling‐Up Insights for Zinc–Air Battery Technologies Realizing Reversible Zinc Anodes

Author:

Shinde Sambhaji S.12,Wagh Nayantara K.12,Lee Chi Ho34,Kim Dong‐Hyung12,Kim Sung‐Hae12,Um Han‐Don5,Lee Sang Uck6,Lee Jung‐Ho12ORCID

Affiliation:

1. Department of Materials Science and Chemical Engineering Hanyang University Ansan Gyeonggi‐do 15588 Republic of Korea

2. FLEXOLYTE Inc. Ansan Republic of Korea

3. Artie McFerrin Department of Chemical Engineering Texas A&M University College Station TX 77843 USA

4. Texas A&M Energy Institute College Station TX 77843 USA

5. Department of Chemical Engineering Kangwon National University Chuncheon Gangwon 24341 Republic of Korea

6. School of Chemical Engineering Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea

Abstract

AbstractZinc–air battery (ZAB) technology is considered one of the promising candidates to complement the existing lithium‐ion batteries for future large‐scale high‐energy‐storage demands. The scientific literature reveals many efforts for the ZAB chemistries, materials design, and limited accounts for cell design principles with apparently superior performances for liquid and solid‐state electrolytes. However, along with the difficulty of forming robust solid‐electrolyte interphases, the discrepancy in testing methods and assessment metrics severely challenges the realistic evaluation/comparison and commercialization of ZABs. Here, strategies to formulate reversible zinc anodes are proposed and specific cell‐level energy metrics (100−500 Wh kg−1) and realistic long‐cycling operations are realized. Stabilizing anode/electrolyte interfaces results in a cumulative capacity of 25 Ah cm−2 and Coulomb efficiency of >99.9% for 5000 plating/stripping cycles. Using 1–10 Ah scale (≈500 Wh kg−1 at cell level) solid‐state zinc–air pouch cells, scale‐up insights for Ah‐level ZABs that can progress from lab‐scale research to practical production are also offered.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3