Abstract
Pt3Co-alloy based nanoparticle catalysts are very active for oxygen reduction reaction (ORR) thereby enabling high performance of proton exchange membrane fuel cells (PEMFC) for automotive propulsion. However, these catalyst materials degrade due to a combination of electrochemical surface area (ECSA) loss and dissolution of cobalt-alloying element from the nanoparticles. Dissolution of cobalt has a two-fold impact on the durability of fuel cells—i) a loss in the low-current density kinetic region due to a decrease in specific activity and ii) a loss in the high-current density transport region due to Co2+ contamination of the ionomer phase. Cobalt dissolution-contamination needs to be mitigated as it limits fuel cell performance and lifetime for heavy-duty automotive applications. In this article, we study the use of PtCo-alloy catalysts with Pt-rich compositions using catalyst-specific accelerated stress test measurement in membrane electrode assemblies to decrease the amount of dissolved Co and mitigate its subsequent contamination effects. We demonstrate Pt5Co and Pt7Co compositions to enable significant improvements in durability (∼50 mV and ∼100 mV with respect to Pt3Co after 30,000 voltage cycles) with a minor but acceptable compromise in the initial specific activity of the catalyst.
Funder
United States Department of Energy, Hydrogen and Fuel Cell Technologies Office
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献