Abstract
The durability of carbon supported PtCo-alloy based nanoparticle catalysts play a key role in the longevity of proton-exchange membrane fuel cells (PEMFC) in electric vehicle applications. To improve its durability, it is important to understand and mitigate the various factors that cause PtCo-based cathode catalyst layers (CCL) to lose performance over time. These factors include i) electrochemical surface area (ECSA) loss, ii) specific activity loss, iii) H+/O2-transport changes and iv) Co2+ contamination effects. We use a catalyst-specific accelerated stress test (AST) voltage cycling protocol to compare the durability of Pt and PtCo catalysts at similar average nanoparticle size and distribution. Our studies indicate that while Pt and PtCo nanoparticle catalysts suffer from similar magnitudes of electrochemical surface area (ECSA) losses, PtCo catalyst shows a significantly larger cell voltage loss at high current densities upon durability testing. The distinctive factor causing the large cell voltage loss of PtCo catalyst appears to be the secondary effects of the leached Co2+ cations that contaminate the electrode ionomer. A 1D performance model has been used to quantify the cell voltage losses arising from various factors causing degradation of the membrane electrode assembly (MEA).
Funder
Fuel Cell Technologies Office
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献