Implications of the Thermal Stability of FEC-Based Electrolytes for Li-Ion Batteries

Author:

Teufl TobiasORCID,Pritzl Daniel Josef,Hartmann LouisORCID,Solchenbach SophieORCID,Mendez Manuel,Gasteiger HubertORCID

Abstract

Abstract Fluoroethylene-carbonate (FEC) is a common co-solvent for high-voltage cathodes and for silicon-based anodes in lithium-ion batteries. However, FEC has a limited thermal stability when used with LiPF6 as conductive salt, and its decomposition can trigger detrimental side reactions. Here, we will examine the reaction mechanism of FEC with LiPF6, confirming that vinylene-carbonate (VC) and HF are produced at elevated temperatures. By full-cell cycling at 45°C in a T-cell setup with a micro-reference electrode (µ-RE), we can show by electrochemical impedance spectroscopy that these side reactions not only lead to an impedance increase of the anode and the cathode, but also trigger transition metal dissolution. By comparison of FEC and ethylene-carbonate (EC) as cyclic carbonate, we demonstrate that FEC has no advantage at high-voltage operation compared to EC, when employing cathode materials or cathode potentials for which no lattice oxygen is evolved. Finally, we use multi-layer pouch-cells to analyze the gassing of an EC- and FEC-based electrolyte upon extended charge/discharge cycling at 45°C, showing that the latter leads to cell bulging upon extended charge/discharge cycling at 45°C due to the oxidation of the VC formed by the thermal decomposition of FEC above ~4.4-4.5 V vs. Li+/Li

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3