Surface Work Function‐Induced Thermally Vulnerable Solid Electrolyte Interphase Formation on the Negative Electrode for Lithium‐Ion Batteries

Author:

Lee Chae Rim12,Jang Ho Yeon3,Leem Han Jun1,Lee Min A1,Kim Wontak1,Kim Jongjung4,Song Jun Ho1,Yu Jisang1,Mun Junyoung2,Back Seoin3,Kim Hyun‐seung1ORCID

Affiliation:

1. Advanced Batteries Research Center Korea Electronics Technology Institute 25, Saenari‐ro Seongnam 13509 Republic of Korea

2. School of Materials Science and Engineering Sungkyunkwan University Suwon 16419 Republic of Korea

3. Department of Chemical and Biomolecular Engineering Institute of Emergent Materials Sogang University Seoul 04107 Republic of Korea

4. Department of Chemical and Biological Engineering Seoul National University Daehak‐dong, Gwanak‐gu Seoul 151‐742 Republic of Korea

Abstract

AbstractThe chemical composition significantly affects the inherent electrical surface properties of the graphite and SiO electrodes, which further, significantly alters the thermal stability of solid electrolyte interphase (SEI) on the negative electrodes. Because the work function of the graphite edge plane is lower than that of the SiO2‐dominant SiO electrode when the electrode is initially lithiated, charge transfer toward the electrolyte is hindered by the high work function of SiO2. Given the increased solubility of the SEI film on SiO, which makes it vulnerable to self‐discharge at higher temperatures than graphite, SiO electrodes exhibit inferior electrochemical performance at high temperatures compared to graphite electrodes. To enhance the performance of SiO electrodes at high temperatures, it is essential to modify the surface work function of the Si‐based electrodes or the lowest unoccupied molecular orbital energy level of the electrolyte additive.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3