Effective Representation of Active Material and Carbon Binder in Porous Electrodes

Author:

Li Weiyu,Tartakovsky Daniel M.ORCID

Abstract

Active cathode material and graphite anode material are routinely mixed with conductor and binder to improve the electric conductivity and mechanical stability of electrodes. Despite its benefits, this carbon binder domain (CBD) impedes ionic transport and reduces the active surface area, thus impacting the battery performance. We consider a composite spherical particle, whose active-material core is coated with CBD, and its homogeneous counterpart, for which we derived equivalent electrical conductivity, ionic diffusivity, and reaction parameters in the Butler-Volmer equation. These equivalent characteristics are defined to ensure that the same mass and charge enter the composite and homogenized spheres. They are expressed in terms of the volume fraction of the active material and transport properties of the active material and CBD. In general, the equivalent effective diffusion coefficient and reaction parameters are time-dependent and exhibit two-stage behavior characterized by the reaction delay time. At later times, these characteristics are time-independent and given explicitly by closed-form formulae. The simplicity of these expressions facilitates their use in single- and multi-particle representations of Li-ion and Li-metal batteries.

Funder

Air Force Office of Scientific Research

Hyundai Motor Group

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3