Impact of Carbon Binder Domain on the Performance of Lithium-metal Batteries

Author:

Boso Francesca,Li WeiyuORCID,Um Kimoon,Tartakovsky Daniel M.ORCID

Abstract

Pseudo-2-dimensional models are routinely used to predict the lithiation curves for energy storage devices, including lithium-metal batteries. The performance of such models is as good as their parameterization, which remains a challenge especially in the presence of carbon binder domain (CBD). We propose two alternative parameterization strategies, which explicitly account for the CBD volume fraction and physical properties. The first aggregates CBD with the electrolyte-filled pore space and expresses the Bruggeman exponent in terms of a solution of microstructure-specific closure problem. The second treats CBD and active particles as a composite solid phase, whose effective properties are computed (semi-)analytically via homogenization. We show that the latter strategy used to parameterize the Doyle-Fuller-Newman model provides an attractive middle ground between the model complexity and the prediction accuracy. Our modeling results suggest that the battery discharge time decreases as either the CBD volume fraction increases or the CBD ionic diffusivity decreases, and is insensitive to the CBD ionic conductivity. The quantitative nature of these observations can be used in the optimal design of porous cathodes.

Funder

Hyundai Motor Group

Air Force Office of Scientific Research

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3