Abstract
Extreme fast charging (XFC) is a key requirement for the adoption of battery-based electric vehicles by the transportation sector. However, XFC has been shown to accelerate degradation, causing the capacity, life, and safety of batteries to deteriorate. We tested cells containing five positive electrode chemistries, LFP (olivine structure), LMO (spinel), LCO (layered), NMC811 (layered) and NCA (layered), using fast-charging protocols. After testing, the negative electrodes from cells containing positive electrodes crystallizing with a layered structure were found to have more lithium deposited on their surfaces. Those crystallizing with a layered structure also tended to have a larger increase in impedance than those crystallizing with a spinel or olivine structure. Characterization of the negative electrodes by X-ray photoelectron spectroscopy showed that using the concentrations of LiF and LixPOyFz as metrics, the concentration of LiF in the SEI from the cell with different positive electrodes is LFP > LMO > LCO ∼ NMC811 > NCA; and for LixPOyFz, the order is LMO > LFP > NCA > NMC811 > LCO. Clearly, the positive-electrode material was influencing the amounts of these materials formed.
Funder
U.S. Department of Energy
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献