Effect of Si Content on Extreme Fast Charging Behavior in Silicon–Graphite Composite Anodes

Author:

Yang Zhenzhen1,Trask Stephen E.1ORCID,Wu Xianyang1,Ingram Brian J.1ORCID

Affiliation:

1. Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA

Abstract

Commercial Li-ion batteries typically incorporate a small amount of high-capacity silicon (Si)-based materials in the composite graphite-based anode to increase the energy density of the battery. However, very little is known about the effects of Si on the fast-charging behavior of composite anodes. Herein, we examine the effects of the Si/graphite ratio in the composite anode on the fast-charging behavior of full cells. We show that addition of Si increases the rate capability from 1C to 8C and improves the capacity retention in early cycles at 6C due to reduced overpotential in constant current charging cycles. The impacts of Si content on fast-charging aging were identified by Post-Test characterization. Despite realizing benefits of available capacity and reduced Li plating at 6C, silicon–electrolyte interactions lead the time-dependent cell performance to fade quickly in the long term. The Post-Test analysis also revealed the thickening of the electrode and nonuniform distribution of electrolyte decomposition products on the Si-containing anodes, as well as the organic-rich solid electrolyte interphase (SEI), which are the factors behind cell degradation. Our study sheds insight on the advantages and disadvantages of Si/graphite composite anodes when they are used in fast-charging applications and guides further research in the area by designing an optimized composition of Si incorporated in a mature graphite matrix.

Funder

U.S. Department of Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3