Influencing Factors and Challenges on the Wettability of Electrode in Molten Salt

Author:

Kong RuijingORCID,Su XianweiORCID,Li ShaolongORCID,Fan Yong,He Jilin,Jiao HandongORCID,Song Jianxun

Abstract

Molten salts play an important role in the electrolysis of solid metal compounds, especially oxides and sulfides, and have an impressive storage capacity and power, so they are now the electrolyte for many new types of rechargeable batteries. Unfortunately, due to the high viscosity and high surface tension of molten salt, the unsatisfactory wettability of electrode and molten salt restricts the development of molten salt electrochemistry. In the past half century, the research on interface phenomena has been devoted to establishing more accurate models for measuring surface tension and wetting angle, developing more scientific wetting angle measurement techniques, and exploring the influencing factors of wettability. Different from water solution interface, molten salt experiment is in high temperature and pressure environment, so it is difficult to test the wetting angle, and there are few researches on the interface phenomenon of molten salt. In this paper, on the basis of existing models and experimental data, the factors and mechanisms that lead to the difference of wettability between melt and solid matrix in molten salt systems are analyzed in detail. Finally, we put forward the prospects and suggestions for the study of the wettability of melt to solid substrate in molten salt.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Project of Zhongyuan Critical Metals Laboratory

the Natural Science Foundation of Henan Province

Youth Science and Technology Innovation of Henan Province

Henan Province Youth Talent Support Program

Publisher

The Electrochemical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3