Electrolyte‐Wettability Issues and Challenges of Electrode Materials in Electrochemical Energy Storage, Energy Conversion, and Beyond

Author:

Zhao Lei1,Li Yuan1,Yu Meimei1,Peng Yuanyou1,Ran Fen1ORCID

Affiliation:

1. State Key Laboratory of Advanced Processing and Recycling of Non‐ferrous Metals Department of Polymeric Materials Science and Engineering School of Materials Science and Engineering Lanzhou University of Technology Lanzhou Gansu 730050 P. R. China

Abstract

AbstractThe electrolyte‐wettability of electrode materials in liquid electrolytes plays a crucial role in electrochemical energy storage, conversion systems, and beyond relied on interface electrochemical process. However, most electrode materials do not have satisfactory electrolyte‐wettability for possibly electrochemical reaction. In the last 30 years, there are a lot of literature have directed at exploiting methods to improve electrolyte‐wettability of electrodes, understanding basic electrolyte‐wettability mechanisms of electrode materials, exploring the effect of electrolyte‐wettability on its electrochemical energy storage, conversion, and beyond performance. This review systematically and comprehensively evaluates the effect of electrolyte‐wettability on electrochemical energy storage performance of the electrode materials used in supercapacitors, metal ion batteries, and metal‐based batteries, electrochemical energy conversion performance of the electrode materials used in fuel cells and electrochemical water splitting systems, as well as capacitive deionization performance of the electrode materials used in capacitive deionization systems. Finally, the challenges in approaches for improving electrolyte‐wettability of electrode materials, characterization techniques of electrolyte‐wettability, as well as electrolyte‐wettability of electrode materials applied in special environment and other electrochemical systems with electrodes and liquid electrolytes, which gives future possible directions for constructing interesting electrolyte‐wettability to meet the demand of high electrochemical performance, are also discussed.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3