Nanoscale Scanning Electrochemical Cell Microscopy and Correlative Surface Structural Analysis to Map Anodic and Cathodic Reactions on Polycrystalline Zn in Acid Media

Author:

Shkirskiy V.ORCID,Yule L. C.,Daviddi E.,Bentley C. L.ORCID,Aarons J.,West G.,Unwin P. R.ORCID

Abstract

Scanning electrochemical cell microscopy (SECCM) is used to map anodic and cathodic processes on polycrystalline zinc in 10 mM H2SO4, at the nanoscale. Electrochemical maps are correlated directly with structural data from electron backscatter diffraction applied to the same regions of the surface, and density functional theory (DFT) calculations are used to rationalize the data. Preliminary data on droplet stability with SECCM point measurements indicated that there was a significant spreading of the meniscus cell with an air atmosphere, attributed to changes in pH during the oxygen reduction reaction, compromising the lateral resolution of the SECCM measurement. Experiments with an argon atmosphere, as well as the application of a hydrophobic n-dodecane oil layer on the Zn interface, prevented spreading. Electrochemical maps of polycrystalline Zn surface under an Ar atmosphere indicated that the hydrogen evolution reaction (HER) and Zn electrodissolution on individual low-index grains decreased in the order 1 ¯ 2 1 ¯ 0 01 1 ¯ 0 > 0001 . DFT calculations revealed a correlation between experimental values of current associated with HER and Zn dissolution reactions and the predicted hydrogen adsorption and Zn dissolution energies on individual facets, respectively. This work further advances SECCM as a technique for probing electrified interfaces and demonstrates its applicability to reactive metals.

Funder

Ramsay Memorial Fellowship Trust

European Union’s Horizon 2020 research and innovation programme

Royal Society Wolfson Research Merit Award

Warwick Collaborative Postgraduate Research Scheme

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3