Carbon Thin‐Film Electrodes as High‐Performing Substrates for Correlative Single Entity Electrochemistry

Author:

Cabré Marc Brunet1,Schröder Christian1,Pota Filippo1,de Oliveira Maida A. Costa1,Nolan Hugo1,Henderson Lua1,Brazel Laurence1,Spurling Dahnan2,Nicolosi Valeria2,Martinuz Pietro3,Longhi Mariangela3,Amargianou Faidra4,Bärmann Peer4,Petit Tristan4,McKelvey Kim15,Colavita Paula E.1ORCID

Affiliation:

1. School of Chemistry Trinity College Dublin Dublin 2 Ireland

2. School of Chemistry, CRANN and AMBER Research Centres Trinity College Dublin Dublin 2 Ireland

3. Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 Milano 20133 Italy

4. Helmholtz‐Zentrum Berlin für Materialienund Energie GmbH (HZB) Albert‐Einstein‐Straße15 12489 Berlin Germany

5. MacDiarmid Institute for Advanced Materials and Nanotechnology School of Chemical and Physical Sciences Victoria University of Wellington Wellington 6012 New Zealand

Abstract

AbstractCorrelative methods to characterize single entities by electrochemistry and microscopy/spectroscopy are increasingly needed to elucidate structure‐function relationships of nanomaterials. However, the technical constraints often differ depending on the characterization techniques to be applied in combination. One of the cornerstones of correlative single‐entity electrochemistry (SEE) is the substrate, which needs to achieve a high conductivity, low roughness, and electrochemical inertness. This work shows that graphitized sputtered carbon thin films constitute excellent electrodes for SEE while enabling characterization with scanning probe, optical, electron, and X‐ray microscopies. Three different correlative SEE experiments using nanoparticles, nanocubes, and 2D Ti3C2Tx MXene materials are reported to illustrate the potential of using carbon thin film substrates for SEE characterization. The advantages and unique capabilities of SEE correlative strategies are further demonstrated by showing that electrochemically oxidized Ti3C2Tx MXene display changes in chemical bonding and electrolyte ion distribution.

Funder

Nuffield Foundation

Helmholtz-Zentrum Berlin für Materialien und Energie

European Research Council

HORIZON EUROPE Marie Sklodowska-Curie Actions

Irish Research Council

Science Foundation Ireland

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3