Slippery and Sticky Superoleophobicities on Hierarchical Aluminum Surfaces Fabricated by Electrochemical Etching and Anodizing Methods

Author:

Kikuchi TatsuyaORCID,Yasuda Junnosuke,Iwai Mana

Abstract

Slippery and sticky superoleophobic aluminum surfaces were fabricated by electrochemical etching and anodizing methods. Collective structures of sub-micrometer-scale cubic-shaped aluminum were formed by electrochemical etching of high-purity aluminum in HCl. The etched specimens were then anodized in H4P2O7 to form anodic alumina nanofibers (AANFs) on the cubic aluminum surface, resulting in a hierarchical aluminum-alumina structure. As the water/oil-repellent self-assembled monolayers were formed on their surfaces, the superoleophobicity of dodecane was more than 150° in the advancing contact angle exhibited on the anodizing surfaces. Conversely, the receding contact angle changed drastically with anodizing time because of the different nanomorphology of AANFs; short anodizing caused slippery superoleophobicity with high contact angle values, whereas long anodizing resulted in sticky superoleophobicity with 0°. We demonstrated the slipping behavior of dodecane droplets on superoleophobic aluminum surfaces with completely opposite sliding properties. The corrosion resistant property of the superoleophobic aluminum surface was also investigated by the measurements of potentiodynamic curve in a 3.5 wt% sodium chloride solution.

Funder

the Nanotechnology Platform Program

the Light Metal Educational Foundation

JSPS-KAKENHI

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3