Electropolishing of Magnesium and Its Alloys Using a Safe Glycol Solution Containing Sodium Chloride

Author:

Tomita Shunsuke,Kikuchi TatsuyaORCID

Abstract

The electropolishing behavior of pure magnesium and its alloys in ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TrEG), and tetraethylene glycol (TeEG) solutions containing sodium chloride was investigated using electrochemical measurements, microscopic observations, and reflectance measurements. Large light-grayish cloudy areas with micrometer-scale linear irregularities were formed on the magnesium surface via constant-voltage electrolysis in the EG solution, whereas mirror-finished magnesium surfaces were successfully obtained in the DEG and TeEG solutions. Among these, the DEG solution is considered appropriate for electropolishing because of its lower viscosity and market price. The reflectance of the entire visible wavelength region gradually increased with time during electrolysis in the DEG solution at 308 K. We found that short-term electrolysis for 3 min at the higher voltage of 75 V should be selected if a moderately polished surface is to be rapidly obtained, whereas long-term electrolysis for 60–300 min at 50 V should be performed if a highly polished surface with an extremely high reflectivity measuring more than 80% can be obtained. Three-dimensional magnesium specimens with curved and spiral shapes and an LZ91 magnesium alloy consisting of a simple solid-solution matrix can also be electropolished via electrolysis in a DEG solution.

Funder

JKA Foundation

the Advanced Research Infrastructure for Materials and Nanotechnology in Japan

Light Metal Educational Foundation

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3