In Situ Imaging of Electrode Thickness Growth and Electrolyte Depletion in Single-Crystal vs Polycrystalline LiNixMnyCozO2/Graphite Pouch Cells using Multi-Scale Computed Tomography

Author:

Bond TobyORCID,Gauthier Roby,Eldesoky A.,Harlow JessieORCID,Dahn J. R.ORCID

Abstract

Single-crystal LiNixMnyCozO2 (NMC) materials have recently garnered significant academic and commercial interest as they have been shown to provide exceptional long-term charge-discharge cycling stability in Li-ion cells. Understanding the degradation mechanisms occurring in conventional polycrystalline NMC materials in comparison to the more stable single-crystal equivalents has become a topic of great importance. In this study, we demonstrate how multi-scale, in situ computed tomography can be used to characterize important changes occurring in wound pouch cells containing polycrystalline vs single-crystal NMC. These changes include cell-level phenomena (such as deformation of the jelly roll and electrolyte depletion) as well as electrode-scale phenomena (such as electrode thickness growth and electrode cracking). Twenty-one cells were scanned in total, consisting of three different electrodes: polycrystalline NMC622, single-crystal NMC811, and single-crystal NMC532. These cell matrices were designed to characterize the effects of varying C-rate, depth of discharge, and duty cycle. This work includes a comprehensive analysis of these factors as they relate to physical changes taking place at both the cell and electrode level.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3