A First Outlook of Sputtered FeWO4 Thin Films for Micro-Supercapacitor Electrodes

Author:

Buvat GaëtanORCID,Iadecola AntonellaORCID,Blanchard Florent,Brousse ThierryORCID,Roussel Pascal,Lethien ChristopheORCID

Abstract

The next generation of Internet of Things devices requires micro-supercapacitors operating at high voltage which is difficult to achieve using symmetrical design. Thus, their fabrication in an asymmetric configuration is mandatory. While MnO2 is well-established as positive electrode, the scarcity of existing efficient materials able to be used at the negative side drives the research towards new promising materials. Since few years, a new class of oxide materials, named multicationic oxides, were demonstrated to be attractive solutions as bulk electrodes for electrochemical capacitor. Among them, the wolframite-type FeWO4 oxide was proposed as an interesting negative electrode material for asymmetric FeWO4/MnO2 electrochemical capacitors. The present paper reports for the first time on the successful thin film synthesis of such iron-tungstate oxide films by reactive DC magnetron sputtering, a deposition method widely used in the semiconductor industry to manufacture micro-devices. The pseudocapacitive behaviour documented at the bulk scale is preserved at the thin film level as well, and opens-up the possibility to use FeWO4 in the next generations of micro-supercapacitors.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference48 articles.

1. The internet of things: a survey;Atzori;Comput. Netw.,2010

2. Internet of things (IoT): a vision, architectural elements, and future directions;Gubbi;Future Gener. Comput. Syst.,2013

3. 5G Internet of things: a survey;Li;Journal of Industrial Information Integration,2018

4. Review—power sources for the Internet of things;Raj;J. Electrochem. Soc.,2018

5. Hybrid energy harvesters: toward sustainable energy harvesting;Ryu;Adv. Mater.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3