High Capacitance Porous Ruthenium Nitride Films with High Rate Capability for Micro‐Supercapacitors

Author:

Dinh Khac Huy123,Whang Grace4,Huve Marielle2,Troadec David1,Barnabé Antoine5,Dunn Bruce4,Roussel Pascal2,Lethien Christophe136ORCID

Affiliation:

1. Institut d'Electronique de Microélectronique et de Nanotechnologies Université de Lille CNRS Université Polytechnique Hauts‐de‐France UMR 8520 – IEMN Lille F‐59000 France

2. Unité de Catalyse et de Chimie du Solide (UCCS) Université de Lille CNRS Centrale Lille Université d'Artois UMR 8181 – UCCS Lille F‐59000 France

3. Réseau sur le Stockage Electrochimique de l'Energie (RS2E) CNRS FR 3459 33 rue Saint Leu Amiens Cedex 80039 France

4. Department of Materials Science and Engineering University of California Los Angeles CA 90095 USA

5. CIRIMAT Université de Toulouse CNRS Université Toulouse 3 Paul Sabatier 118 route de Narbonne Toulouse Cedex 31062 France

6. Institut Universitaire de France (IUF) Paris 75231 France

Abstract

AbstractThe demand for high‐performance energy storage devices to power Internet of Things applications has driven intensive research on micro‐supercapacitors (MSCs). In this study, RuN films made by magnetron sputtering as an efficient electrode material for MSCs are investigated. The sputtering parameters are carefully studied in order to maximize film porosity while maintaining high electrical conductivity, enabling a fast charging process. Using a combination of advanced techniques, the relationships among the morphology, structure, and electrochemical properties of the RuN films are investigated. The films are shown to have a complex structure containing a mixture of crystallized Ru and RuN phases with an amorphous oxide layer. The combination of high electrical conductivity and pseudocapacitive charge storage properties enabled a 16 µm‐thick RuN film to achieve a capacitance value of 0.8 F cm−2 in 1 m KOH with ultra‐high rate capability.

Funder

Agence Nationale de la Recherche

Office of Naval Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3