Revealing the Nanostructure of Mesoporous Fuel Cell Catalyst Supports for Durable, High-Power Performance

Author:

Ko Matthew,Padgett ElliotORCID,Yarlagadda VenkataORCID,Kongkanand AnusornORCID,Muller David A.ORCID

Abstract

Achieving high power performance and durability with low Pt loadings are critical challenges for proton exchange membrane fuel cells. PtCo catalysts developed on new carbon black supports show promise by simultaneously providing good oxygen reduction kinetics and local oxygen transport. We investigate the role of nanoscale morphology in the performance of these catalysts supported on accessible (HSC-e and HSC-f) and conventional (Ketjen Black) porous carbons using 3D electron tomography, nitrogen sorption, and electrochemical performance measurements. We find that the accessible porous carbons have hollow interiors with mesopores that are larger and more numerous than conventional porous carbons. However, mesopore-sized openings (>2 nm width) are too rare to account for significant oxygen transport. Instead we propose the primary oxygen transport pathway into the interior is through 1–2 nm microporous channels permeating the carbon. The increased mesoporosity in the accessible porous carbons results in a shorter diffusion pathlength through constrictive, tortuous micropores in the support shell leading to lower local oxygen transport resistance. In durability testing, the accessible porous carbons show faster rates of electrochemical surface area loss, likely from fewer constrictive pores that would mitigate coarsening, but maintain superior high current density performance at end of test from the improved local oxygen transport.

Funder

Office of Energy Efficiency and Renewable Energy

Division of Materials Research

Division of Graduate Education

Office of Science

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3