Recent Progress in Using Mesoporous Carbon Materials as Catalyst Support for Proton Exchange Membrane Fuel Cells

Author:

Wang Guanxiong1,Zhao Wei2,Mansoor Majid3,Liu Yinan2,Wang Xiuyue2,Zhang Kunye2,Xiao Cailin1,Liu Quansheng1,Mao Lingling4,Wang Min2,Lv Haifeng1

Affiliation:

1. Shenzhen Academy of Aerospace Technology, Shenzhen 518057, China

2. College of New Energy, China University of Petroleum (East China), Qingdao 266580, China

3. College of Energy Soochow, Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China

4. Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

Abstract

Developing durable oxygen reduction reaction (ORR) electrocatalysts is essential to step up the large-scale applications of proton exchange membrane fuel cells (PEMFCs). Traditional ORR electrocatalysts provide satisfactory activity, yet their poor durability limits the long-term applications of PEMFCs. Porous carbon used as catalyst support in Pt/C is vulnerable to oxidation under high potential conditions, leading to Pt nanoparticle dissolution and carbon corrosion. Thus, integrating Pt nanoparticles into highly graphitic mesoporous carbons could provide long-term stability. This Perspective seeks to reframe the existing approaches to employing Pt alloys and mesoporous carbon-integrated ORR electrocatalysts to improve the activity and stability of PEMFCs. The unusual porous structure of mesoporous carbons promotes oxygen transport, and graphitization provides balanced stability. Furthermore, the synergistic effect between Pt alloys and heteroatom doping in mesoporous carbons not only provides a great anchoring surface for catalyst nanoparticles but also improves the intrinsic activity. Furthermore, the addition of Pt alloys into mesoporous carbon optimizes the available surface area and creates an effective electron transfer channel, reducing the mass transport resistance. The long-term goals for fuel-cell-powered cars, especially those designed for heavy-duty use, are well aligned with the results shown when this hybrid material is used in PEMFCs to improve performance and durability.

Funder

National Natural Science Foundation of China

Qingdao New Energy Shandong Laboratory Open Project

China University of Petroleum

Fundamental Research Funds for the Central Universities

Fund of Shenzhen Municipal Central Government Guide Local Science and Technology

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3