Abstract
Electrochemical ion insertion into transition metal oxides forms the foundation of several energy technologies. Transition metal oxides can exhibit sluggish ion transport and/or phase-transformation kinetics during ion insertion that can limit their performance at high rates (<10 min). In this study, we investigate the role of structural water in transition metal oxides during Li+ insertion using staircase potentiostatic electrochemical impedance spectroscopy (SPEIS) and electrochemical quartz crystal microbalance (EQCM) analysis of WO3·H2O and WO3 thin-film electrodes. Overall, the presence of structural water in WO3·H2O improves Li+ insertion kinetics compared to WO3 and leads to a less potential-dependent insertion process. Operando electrogravimetry and 3D Bode impedance analyses of nanostructured films reveal that the presence of structural water promotes charge accommodation without significant co-insertion of solvent, leading to our hypothesis that the electrochemically induced structural transitions of WO3 hinder the electrode response at faster timescales (<10 min). Designing layered materials with confined fluids that exhibit less structural transitions may lead to more versatile ion-insertion hosts for next-generation electrochemical technologies.
Funder
Division of Materials Research
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献