Surface‐Redox Pseudocapacitance‐Dominated Charge Storage Mechanism Enabled by the Reconstructed Cathode/Electrolyte Interface for High‐Rate Magnesium Batteries

Author:

Wu Dongzheng1,Kang Yuanhong1,Wang Fei1,Yang Jin1,Xu Yaoqi1,Zhuang Yichao1,Wu Jiayue1,Zeng Jing1,Yang Yang1,Zhao Jinbao1ORCID

Affiliation:

1. State Key Lab of Physical Chemistry of Solid Surfaces Collaborative Innovation Centre of Chemistry for Energy Materials State‐Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle Engineering Research Center of Electrochemical Technology Ministry of Education College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China

Abstract

AbstractTh all phenyl complex (APC) electrolyte is generally accepted to be compatible with Mg metal anodes, offering excellent plating/stripping reversibility. However, the large Cl desolvation penalty of the MgCl+ solvation structure in APC electrolyte causes a high reaction energy barrier at the cathode/electrolyte interface, resulting in unsatisfactory rate performance. Herein, the interface reconstruction strategy of an anatase TiO2 cathode is proposed by the combination of ultrathin carbon coating and oxygen vacancies, which realizes the fast surface‐redox pseudocapacitance charge storage mechanism via MgCl+, circumventing the sluggish solid‐phase migration of Mg2+. Theoretical calculations verify that the introduction of oxygen vacancies in TiO2, not only increases the intrinsic electronic conductivity, but also improves the adsorption capability for MgCl+, which enhances the surface‐redox pseudocapacitance of TiO2. Moreover, in situ Raman measurements, ex situ XPS spectra and XRD patterns demonstrate the structural integrity of TiO2 without undergoing phase change and the rapid reversible storage of MgCl+. Furthermore, in situ electrochemical impedance spectra reveal that the reconstructed cathode/electrolyte interface promotes the kinetics of active cations and induces the less potential‐dependent charge storage process. Consequently, TiO2 exhibits a remarkable rate performance (discharge capacity of 68.9 mAh g−1 at 1 A g−1) and long‐lifespan over 3000 cycles at 0.5 A g−1.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3