Quantification of Curcuminoids in Turmeric Using Visible Reflectance Spectra and a Decision-Tree Based Chemometric Approach

Author:

Suresh Hasika,Behera Amruta RanjanORCID,Selvaraja Shankar KumarORCID,Pratap Rudra

Abstract

For quantification of curcumin content in turmeric, a low-cost multivariate-analysis-based sensing system is desired. It can be realized by exploiting the spectra in the visible region, which enables the use of off-the-shelf, relatively inexpensive light sources and detectors. To address this, we propose a novel decision-tree method for improved prediction accuracy. Two sets of models with PLSR algorithm are developed with the measured reflectance spectra from 66 turmeric samples in the range of 360–750 nm, and their respective curcuminoids content are quantified by HPLC. A suite of a coarse-model for initial prediction of turmeric samples in the broad range of 1%–4%, and five finer-models for subsequent prediction (in the ranges 1%–2%, 2%–3%, 3%–4%, 1.5%–2.5%, and 2.5%–3.5%) constitute the proposed decision-tree approach. The method’s efficacy is substantiated from an improved coefficient of determination (R 2) for the finer models (0.90–0.96) as compared to the coarse-model’s 0.92. This is further corroborated with lower RMSECV of 0.06–0.13 and an RMSEP of 0.15–0.25 for finer models, as compared to 0.219 and 0.45 for the coarse model, respectively. Testing reveals that the method results in 46% reduction in prediction error. Realization of a robust prediction approach in the visible range sets the stage for the development of cost-effective field-deployable devices for on-site measurement of curcumin.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3