Abstract
The impact of gas evolution on the electrochemical characteristics of planar electrodes and microwire array electrodes has been analyzed using modeling and simulation. The impacts can mainly be broken into three phenomena: a) a shift in the local reversible hydrogen electrode potential; b) hyperpolarization; and c) an increase in the solution resistance of the electrolyte. The local reversible hydrogen electrode potential shift was found to play the most important role, constituting >40% of the total potential drop between the cathode and reference electrode, following correction for cell resistance. Compared to planar electrodes, a microwire array structure reduces the impact of bubbles on the solution conductance, but the shift in the local reversible hydrogen electrode potential varies with distance from the actual electrode surface.
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献