Influence of Laser Structuring and Calendering of Graphite Anodes on Electrode Properties and Cell Performance

Author:

Hille LucasORCID,Toepper Hans-Christoph,Schriever Charlotte,Kriegler JohannesORCID,Keilhofer JosefORCID,Noecker Marc P.,Zaeh Michael F.

Abstract

In this study, the influence of calendering and laser structuring on the pore structure and electrochemical performance of electrodes is reported. Graphite anodes of varying bulk porosity were micro structured with pulsed laser radiation. Using scanning electron microscopy and energy-dispersive X-ray spectroscopy, laser structuring was found to release superficial pore clogging caused by calendering and to result in binder agglomerates on the electrode surfaces. Structured electrodes showed higher porosities than their unstructured counterparts due to a thickness increase and material removal, but no significant change in the pore size distribution was detected using mercury intrusion porosimetry. Electrochemical impedance spectra of symmetric battery cells revealed increasing ionic resistances and tortuosities for decreasing electrode porosities. Laser structuring significantly reduced the underlying lithium-ion diffusion limitations at all porosity levels. In a discharge rate test, performance deteriorations at high currents were found to be amplified by calendering and could be diminished by electrode structuring. The performance improvements by laser structuring moved towards lower C-rates for stronger compressed anodes. Despite their growth in thickness and porosity, laser structured graphite anodes showed a higher volumetric energy density at high currents than unstructured electrodes, which demonstrates the potential of electrode structuring for highly compressed anodes.

Funder

Bundesministerium für Bildung und Forschung

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3