Abstract
AbstractThe world is shifting to electric vehicles to mitigate climate change. Here, we quantify the future demand for key battery materials, considering potential electric vehicle fleet and battery chemistry developments as well as second-use and recycling of electric vehicle batteries. We find that in a lithium nickel cobalt manganese oxide dominated battery scenario, demand is estimated to increase by factors of 18–20 for lithium, 17–19 for cobalt, 28–31 for nickel, and 15–20 for most other materials from 2020 to 2050, requiring a drastic expansion of lithium, cobalt, and nickel supply chains and likely additional resource discovery. However, uncertainties are large. Key factors are the development of the electric vehicles fleet and battery capacity requirements per vehicle. If other battery chemistries were used at large scale, e.g. lithium iron phosphate or novel lithium-sulphur or lithium-air batteries, the demand for cobalt and nickel would be substantially smaller. Closed-loop recycling plays a minor, but increasingly important role for reducing primary material demand until 2050, however, advances in recycling are necessary to economically recover battery-grade materials from end-of-life batteries. Second-use of electric vehicles batteries further delays recycling potentials.
Funder
China Scholarship Council
EC | Horizon 2020 Framework Programme
Publisher
Springer Science and Business Media LLC
Reference75 articles.
1. Knobloch, F. et al. Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nat. Sustain. 3, 437–447 (2020).
2. Deng, J., Bae, C., Denlinger, A. & Miller, T. Electric vehicles batteries: requirements and challenges. Joule 4, 511–515 (2020).
3. Global EV Outlook 2020: Entering the decade of electric drive? (International Energy Agency, 2020). https://www.iea.org/reports/global-ev-outlook-2020.
4. Ponrouch, A. & Rosa Palacín, M. Post-Li batteries: promises and challenges. Philos. Trans. R. Soc. A 377, 20180297 (2019).
5. Olivetti, E. A., Ceder, G., Gaustad, G. G. & Fu, X. Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1, 229–243 (2017).
Cited by
446 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献