Fast Charging of Lithium-ion Batteries via Electrode Engineering

Author:

Vishnugopi Bairav S.,Verma AnkitORCID,Mukherjee Partha P.ORCID

Abstract

Vehicular electrification necessitates the need for fast charge of lithium-ion batteries (LIBs) involving high current densities such that the charging durations reach equivalence with internal combustion engine vehicles refueling times. High C-rate performance of LIBs requires overcoming challenges associated with Li plating, thermal excursions and battery shutdown at sub-zero temperatures. In this work, we aim to understand/improve fast charge characteristics by delving into the electrode level microstructural impact on battery performance in terms of delivered capacity, temperature rise and plating propensity. A microstructure-aware physics-based electrochemical-thermal model is used to ascertain the performance-safety indicators from sub-zero to standard thermal environments. Fast charge is an anode-centric phenomenon; consequently, optimal anode porosities and operating conditions are ascertained. At sub-zero temperatures, high C-rate operation up to a threshold provides good capacities and low plating propensity through large heat generation induced cell temperature elevation to appreciable levels. Beyond the threshold current, self-shutdown of the cell prevents any degradation. Additionally, standard thermal environment operation is majorly limited by rapid temperature rise beyond safe limits and large plating propensities at low porosities.

Funder

Office of Naval Research

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3