Thermal Runaway Propagation Analytics and Crosstalk in Lithium‐Ion Battery Modules

Author:

Karmakar Avijit1ORCID,Zhou Hanwei1ORCID,Vishnugopi Bairav S.1,Mukherjee Partha P.1ORCID

Affiliation:

1. School of Mechanical Engineering Purdue University West Lafayette IN 47907 USA

Abstract

The thermal safety of lithium‐ion (Li‐ion) batteries continues to remain a critical concern for widespread vehicle electrification. Under abuse scenarios, thermal runaway (TR) of individual energy‐dense Li‐ion cells can be dominated by various exothermic mechanisms due to interelectrode crosstalk, resulting in an enormous heat generation response that can potentially lead to thermal runaway propagation (TRP) in a battery module. Herein, a hierarchical TRP analytics approach is developed, which includes cell‐level thermokinetic and electrode crosstalk interactions derived from accelerating rate calorimetry characteristics of a representative high‐energy 18650 cylindrical Li‐ion cell with Ni‐rich cathodes and Si–C anodes. The hierarchical TRP model, coupled with multimodal heat dissipation, demonstrated for an exemplar energy‐dense Li‐ion battery module configuration, determines TRP criticality at module level for a wide range of conditions, including ambient temperature, intercell spacing, trigger cell location, external heating power, and heat dissipation coefficients. Potential propagation pathways have been identified, and their underlying attributes in terms of propagation speed, heat release from exothermic reactions, critical thermal energy input, and heat dissipation to surroundings have been quantified. This hierarchical approach, including thermal transfer and chemical interelectrode crosstalk during TR, can provide high‐resolution TRP analytics for energy‐dense Li‐ion battery modules and is scalable to packs.

Funder

Office of Naval Research

Publisher

Wiley

Subject

General Energy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. State-of-Charge Implications of Thermal Runaway in Li-ion Cells and Modules;Journal of The Electrochemical Society;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3