Investigating the Influence of Polymer Binders on Liquid Phase Transport and Tortuosity Through Lithium-Ion Electrodes

Author:

Bernard John C.ORCID,Hestenes Julia C.,Mayilvahanan Karthik S.ORCID,Marbella Lauren E.ORCID,West Alan C.ORCID

Abstract

Quantifying the tortuosity of porous lithium-ion electrodes is important for understanding the rate capability of cells and for optimizing their design, particularly when designing high energy density cells such as those desired for electric vehicles. However, quantifying tortuosity may be difficult, and results often disagree with the commonly used Bruggeman relation. Here, we discuss the observation that PVDF binder, a polymer used to mechanically hold the electrode together, has a direct effect on the rate capability of NMC111 cathodes. Using a pseudo-two-dimensional (P2D) physics-based model of the system, we fit the electrode tortuosity to the cycling data and determine that increased binder volume fraction in an electrode leads to increased electrode tortuosity. Using a TiO2-based blocking electrode, we further support these findings using electrochemical impedance spectroscopy (EIS) measurements and transmission line models. Finally, using pulsed field gradient nuclear magnetic resonance (PFG-NMR) experiments on these blocking electrodes, we propose a mechanism involving liquid phase Li ion “choke-points,” formed by the addition of PVDF binder, which dominates electrode tortuosity. We provide an empirically derived relationship that serves as a binder volume correction to the Bruggeman relation, and this finding motivates further work on the impact of different electrode components on transport through porous electrodes.

Funder

Moses Lake Industries Inc.

National Science Foundation Graduate Research Fellowship Program

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3