Abstract
This study introduces a framework for modeling the aqueous Zn/MnO2 rechargeable battery. A reaction system and a physics-based continuum model are proposed based on two reaction types, one involving insertion and the second related to dissolution and deposition of a solid reaction product. The model, fitted to empirical data, predicts voltage behavior and capacity limitations during cycling, identifying electrolytic zinc depletion as a limiting mechanism, depending on the original cell construction. The research suggests the need for further material characterization and reaction analysis, which will advance our understanding and facilitate the development of grid-scale energy storage solutions.
Funder
the Center for Mesoscale Transport Properties, an Energy Frontier Research Center supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences
Publisher
The Electrochemical Society