Mechanical Deformation of Lithium-Ion Pouch Cells under In-Plane Loads—Part I: Experimental Investigation

Author:

Zhu JunerORCID,Koch Marco Miguel,Lian JunheORCID,Li Wei,Wierzbicki Tomasz

Abstract

During an accident of an electric vehicle, the battery pack can be damaged by the intrusion of an external object, causing large mechanical deformation of its lithium-ion battery cells, which may result in an electrical short circuit and subsequently the possible thermal runaway, fire, and even explosion. In reality, the external objects can come in different directions, for example, an out-of-plane indentation that perpendicularly punches the large surface of the pouch cell and an in-plane loading that compresses the thin edge of the cell. In this study, the mechanical deformation of a large-format lithium-ion pouch cell under in-plane loads is investigated via three different types of tests — in-plane compression of fully constrained cells, in-plane compression of cells sandwiched by foams, and in-plane indentation by a round punch. A special apparatus is designed to apply different boundary conditions on the cell, and the deformation history, especially the formation of the buckles of the cells, are monitored by two digital cameras. Post-testing structural analysis is carried out by a cross-sectional cutting and polishing procedure, which gives clear evidence of buckling of all the component layers.

Funder

MIT Battery Modeling Consortium

Ford-MIT Alliance

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3