Recovery of Degraded Ni-Rich NMC811 Particles for Lithium-Ion Batteries

Author:

Yu Han,Gao Yan,Kirtley James,Borgmeyer Gabriel,He Xiaoqing,Liang XinhuaORCID

Abstract

Nickel-rich cathode materials attract a lot of attention due to their high energy density. However, their sensitivity to air and moisture hinders their practical applications. Exposing Ni-rich NMC in the air will produce by-products that are not conducive to lithium-ion transmission. Water washing can be used to remove by-products on the surface, but it can also introduce new problems, such as the generation of NiO on the particle surface, which will reduce the electrochemical performance of the material. In this study, Al2O3 atomic layer deposition (ALD) was applied on degraded NMC811 particles to recover the electrochemical performance of the degraded NMC811 particles, which had been exposed to moisture. XPS and XRD analysis verified that the Al2O3 ALD coating removed the contaminant components on the particle surface, such as LiOH and Li2CO3, as well as reactivation of inactive Ni due to reaction with moisture. Furthermore, the coating film can also inhibit side reactions during the charge and discharge process and enhance the cycling stability.

Funder

Linda and Bipin Doshi endowment of Missouri University of Science and Technology

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3