Homogeneous Repair of Highly Degraded Ni‐Rich Cathode Material with Spent Lithium Anode

Author:

Shi Ruyu1ORCID,Zheng Nengzhan1,Ji Haocheng1,Zhang Mengtian1,Xiao Xiao1,Ma Jun1,Chen Wen1,Wang Junxiong12,Cheng Hui‐Ming34,Zhou Guangmin1ORCID

Affiliation:

1. Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China

2. Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China

3. Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality Shenzhen Institute of Advanced Technology Chinese Academy of Science Shenzhen 518055 China

4. Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang 110016 China

Abstract

AbstractDirect regeneration of spent lithium‐ion batteries has received wide attention owing to its potential for resource reuse and environmental benefits. The repair effect of direct regeneration methods undergoing heterogeneous repair process is usually inferior, while homogenous repair process plays a vital role to achieve satisfactory repair results. However, the practical applications of current homogeneous repair methods are challenged by the complex operations and relatively high costs owing to the requirement of additional heating or pressurization. Herein, this work proposes a simple strategy to achieve homogeneous repair of spent cathode materials under relatively mild conditions by uniformly precoating lithium source at room temperature and atmospheric pressure. Followed by annealing, highly degraded LiNi0.83Co0.12Mn0.05O2 with severe Li deficiency and irreversible phase transition is repaired to have an initial capacity of 181.6 mAh g‐1 and capacity retention of 80.7% after 150 cycles at 0.5 C. The lithium source used in this strategy is from the spent lithium anode. Moreover, this strategy is suitable for the direct regeneration of various layer oxide cathode materials with different failure degrees. This work provides both theoretical guidance and practical examples for the straightforward, effective, and universally applicable direct regeneration methods.

Funder

National Natural Science Foundation of China

Guangdong Innovative and Entrepreneurial Research Team Program

Shenzhen Science and Technology Innovation Program

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3